博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
MySQL主从复制数据不一致问题【自增主键】
阅读量:6376 次
发布时间:2019-06-23

本文共 12179 字,大约阅读时间需要 40 分钟。

前言:

       今天遇到主从表不一致的情况,很奇怪为什么会出现不一致的情况,因为复制状态一直都是正常的。最后检查出现不一致的数据都是主键,原来是当时初始化数据的时候导致的。现在分析记录下这个问题,避免以后再遇到这个"坑"。

背景:

      主从服务器,MIXED复制模式。

分析:

      表:SPU

Table: SPUCreate Table: CREATE TABLE `SPU` (  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,  `trademark` varchar(255) NOT NULL COMMENT '品牌',  `item_code` varchar(255) NOT NULL COMMENT '货号',  `product_id` int(10) DEFAULT '0',  PRIMARY KEY (`id`),  KEY `trademark` (`trademark`),  KEY `item_code` (`item_code`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='SPU'

当时的初始化操作的SQL:

INSERT INTO SPU(trademark, item_code) SELECT * FROM (SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2FROM     product_property a  LEFT JOIN product_property b ON     a.product_id = b.product_id WHERE     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' AND     b.value IS NOT NULL AND b.value <> '' ) as aa

      上面的SQL执行完之后,主从表的COUNT数量一样,但SPU表有个自增主键,就在这里出现主从插入SPU的顺序不一样,即主从SELECT出来的结果顺序不一样。由于上面的结果集很大,所以就取前10条记录看看:

主:

现在表中数据的顺序:zjy@192.168.10.23 : tt 04:38:48>select id,trademark col1,item_code col2 from SPU limit 10;+----+-----------+-------------+| id | col1      | col2        |+----+-----------+-------------+|  1 | 鼓浪屿    | gd rg       ||  2 | 山松      | 10020122    ||  3 | coulter   | 无          ||  4 | oricell   | mubmd-01101 ||  5 | oricell   | huxma-01101 ||  6 | oricell   | huxmf-01001 ||  7 | oricell   | rawmx-01001 ||  8 | oricell   | rasmx-01001 ||  9 | oricell   | rafmx-01101 || 10 | oricell   | rbxmx-01001 |+----+-----------+-------------+10 rows in set (0.01 sec)当时初始化的sql读出数据的顺序:zjy@192.168.10.23 : tt 04:40:25>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> ''  limit 10;+-----------+-------------+| col1      | col2        |+-----------+-------------+| 鼓浪屿    | gd rg       || 山松      | 10020122    || coulter   | 无          || oricell   | mubmd-01101 || oricell   | huxma-01101 || oricell   | huxmf-01001 || oricell   | rawmx-01001 || oricell   | rasmx-01001 || oricell   | rafmx-01101 || oricell   | rbxmx-01001 |+-----------+-------------+10 rows in set (0.01 sec)

上面结果col1,col2的顺序一模一样。

从:

现在表中数据的顺序:zjy@192.168.10.8 : tt 04:38:03>select id,trademark col1,item_code col2 from SPU limit 10;+----+--------------------------------+-----------------+| id | col1                           | col2            |+----+--------------------------------+-----------------+|  1 | bio-rad                        | 125-0140        ||  2 | oricell(tm)                    | huxma-90011     ||  3 | oricell(tm)                    | huxmf-90011     ||  4 | oricell(tm)                    | rawmx-90011     ||  5 | oricell                        | rasmx-90011     ||  6 | oricell                        | rafmx-90011     ||  7 | oricell                        | rbxmx-90011     ||  8 | 上海科技有限公司                 | bsm03011        ||  9 | oricell                        | caxmx-90011     || 10 | oricell(tm)                    | tedta-10001-100 |+----+--------------------------------+-----------------+10 rows in set (0.00 sec)当时初始化的sql读出数据的顺序:zjy@192.168.10.8 : tt 04:38:58>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> ''  limit 10;+--------------------------------+-----------------+| col1                           | col2            |+--------------------------------+-----------------+| bio-rad                        | 125-0140        || oricell(tm)                    | huxma-90011     || oricell(tm)                    | huxmf-90011     || oricell(tm)                    | rawmx-90011     || oricell                        | rasmx-90011     || oricell                        | rafmx-90011     || oricell                        | rbxmx-90011     || 上海科技有限公司                 | bsm03011        || oricell                        | caxmx-90011     || oricell(tm)                    | tedta-10001-100 |+--------------------------------+-----------------+10 rows in set (0.01 sec)

上面结果col1,col2的顺序一模一样。

       到此为止,大家就清楚为什么SPU表的数据不一致了,准确来说是主键对应的数据不一致。要是自增主键只是提升INNODB的性能,没有业务上的意义,那么对于产品来说是没有影响的,可以忽略这个问题。否则,就需要好好的处理这个问题了。从另一个方面来说,也是因为复制的模式是STATEMENT引发这个问题的,因为同一个QUERY在2个地方执行出的结果不一样;要是ROW的复制模式,主会把所有字段的记录全部传送给从,就不会出现这个问题。

进一步分析: 为什么一样的SQL在主从上跑出来的数据顺序不一样呢?

      通过EXPLAIN 看到主上的QUERY 先读 b表,再读a表;而从上的则是先扫描a表,再读b表。出现这样的情况,就是数据在块里面分布不一致,导致索引利用的方式也不一样,最终影响优化器的选择。因为INNODB是索引组织表的,一旦走的索引不一样,就会导致数据以不同的顺序被扫描出来。上面的这些结果刚好被验证。SQL执行计划如下:

主:先b再a

zjy@192.168.10.23 : tt 09:18:04>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 4145932 | Using where; Using temporary ||  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+2 rows in set (0.01 sec)

从:先a再b

zjy@192.168.10.8 : tt 09:18:13>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+|  1 | SIMPLE      | a     | ref  | property_id,product_id | property_id | 4       | const                | 17079464 | Using where; Using temporary ||  1 | SIMPLE      | b     | ref  | property_id,product_id | product_id  | 4       | tt.a.product_id |        5 | Using where                  |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+2 rows in set (0.13 sec)

主从对比发现,他们的执行计划和各表走的索引都不一样,导致最后出来的顺序也不一样的(结果集是一样的),这就验证了分析说的情况。那要是执行计划和索引一致呢?接下来继续验证下:

进一步验证:

因为INNODB是索引组织表的,索引就是数据,要是主从的执行计划一样,则他们的结果会是?

主的执行计划:zjy@192.168.10.23 : tt 05:42:15>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> '';+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 3771874 | Using where; Using temporary ||  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+2 rows in set (0.01 sec)从的执行计划:zjy@192.168.10.8 : tt 05:42:07>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> '';+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 17375012 | Using where; Using temporary ||  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |        5 | Using where                  |+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+2 rows in set (0.00 sec)

执行计划一样,都是先b表再a表,再重新执行初始化的SQL:

主:

zjy@192.168.10.23 : tt 05:42:26>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> ''  limit 10    -> ;+-----------+-------------+| col1      | col2        |+-----------+-------------+| 鼓浪屿    | gd rg       || 山松      | 10020122    || coulter   | 无          || oricell   | mubmd-01101 || oricell   | huxma-01101 || oricell   | huxmf-01001 || oricell   | rawmx-01001 || oricell   | rasmx-01001 || oricell   | rafmx-01101 || oricell   | rbxmx-01001 |+-----------+-------------+10 rows in set (0.00 sec)

从:

zjy@192.168.10.8 : tt 05:42:32>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2    -> FROM     ->     product_property a  LEFT JOIN product_property b     -> ON     ->     a.product_id = b.product_id     -> WHERE     ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''     -> AND     ->     b.value IS NOT NULL AND b.value <> ''  limit 10    -> ;+-----------+-------------+| col1      | col2        |+-----------+-------------+| 鼓浪屿    | gd rg       || 山松      | 10020122    || coulter   | 无          || oricell   | mubmd-01101 || oricell   | huxma-01101 || oricell   | huxmf-01001 || oricell   | rawmx-01001 || oricell   | rasmx-01001 || oricell   | rafmx-01101 || oricell   | rbxmx-01001 |+-----------+-------------+10 rows in set (0.01 sec)

好了,要是执行计划一样,结果是:SQL在主从上跑出来的结果一致了。

PS:另一个方法就是用ROW模式,有兴趣的可以测试下。

总结:

      主从复制在STATEMENT下面确实被忽略了一些问题,可以用ROW模式代替,但也要知道ROW模式有哪些问题,可以参考。也要清楚数据在磁盘块里面分布不一致,影响优化器的选择而导致索引利用的方式也不一样,最终也影响到数据的顺序。

      总之,在主从上执行一些比较大的数据量的操作(批量、初始化)的时候,尽可能的先去主从上查看他们的执行计划是否一样,走的索引是否一致,确保查询出来的结果一样。另:这篇文章:(MySQL "replace into" 的坑) 也在一定程度上说明别用自增主键当成有意义的数据。

 

转载地址:http://sktqa.baihongyu.com/

你可能感兴趣的文章
Android捕获监听Home键、最近任务列表键
查看>>
微服务分布式企业框架 Springmvc+mybatis+shiro+Dubbo+ZooKeeper+Redis+KafKa
查看>>
word2vec原理(三) 基于Negative Sampling的模型
查看>>
被《时代周刊》选为年度最佳发明,PS VR靠的竟然是价格
查看>>
通用唯一标识码UUID的介绍及使用。
查看>>
spring笔记--依赖注入之针对不同类型变量的几种注入方式
查看>>
Java爬虫——网易云热评爬取
查看>>
Ajax的简单学习
查看>>
无华为,不智慧:智慧城市建设为何少不了华为?
查看>>
高性能网络通信框架Netty-基础概念篇
查看>>
为npm配置taobao源
查看>>
orm框架(SQLAlchemy) 连接数据库和创建表
查看>>
OSPF多区域虚电路配置
查看>>
zookeeper初探三 java客户端连接
查看>>
管理邮件用户
查看>>
Python中的运算符、数据类型、字符串及列表操作举例
查看>>
Tab页界面之二,jQuery技术实现
查看>>
如何查看linux版本
查看>>
导出DC数据以便以介质方式安装另一台域控制器
查看>>
2、Gerrit配置--用户配置
查看>>